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Abstract: Biological effects of the Fukushima nuclear accident have been reported in various organ-
isms, including the pale grass blue butterfly Zizeeria maha and its host plant Oxalis corniculata. This
plant upregulates various secondary metabolites in response to low-dose radiation exposure, which
may contribute to the high mortality and abnormality rates of the butterfly in Fukushima. However,
this field effect hypothesis has not been experimentally tested. Here, using an artificial diet for larvae,
we examined the ingestional toxicity of three radiation-dependent plant metabolites annotated in a
previous metabolomic study: lauric acid (a saturated fatty acid), alfuzosin (an adrenergic receptor
antagonist), and ikarugamycin (an antibiotic likely from endophytic bacteria). Ingestion of lauric acid
or alfuzosin caused a significant decrease in the pupation, eclosion (survival), and normality rates,
indicating toxicity of these compounds. Lauric acid made the egg-larval days significantly longer,
indicating larval growth retardation. In contrast, ikarugamycin caused a significant increase in the
pupation and eclosion rates, probably due to the protection of the diet from fungi and bacteria. These
results suggest that at least some of the radiation-dependent plant metabolites, such as lauric acid,
contribute to the deleterious effects of radioactive pollution on the butterfly in Fukushima, providing
experimental evidence for the field effect hypothesis.

Keywords: radioactive pollution; Fukushima nuclear accident; lauric acid; alfuzosin; ikarugamycin;
plant secondary metabolite; artificial diet; Zizeeria maha; Oxalis corniculata; low-dose exposure

1. Introduction

Anthropogenic impacts on wild organisms have been an important scientific and
political issue worldwide in this century. Human activities often involve local and global
scale pollution of air, water, soil, and ocean, leading to climate changes and human health
disorders [1,2]. For example, anthropogenic radionuclides from nuclear bomb tests and
nuclear power plant accidents can be found worldwide [3–7]. It is thus important to un-
derstand precisely how severely wild organisms are affected by human activities and in
what ways. To this end, butterflies have often been used as ecological indicators because
of their advantages over other organisms [8,9]. For example, (1) butterflies are often con-
spicuous and abundant in the field and easy to identify at the species level, (2) a wealth of
information on life history is available, (3) rich museum specimens are often available, and
(4) many amateur lepidopterists may join field studies covering a wide geographic range.
These advantages of using butterflies are invaluable for field studies. Not surprisingly,
changes in butterfly species in abundance, range, phenology, and diversity have been
used as key factors to understand recent environmental influences in many studies [10–16].
Occasionally, studies have focused on a single or a few indicator species [17–23]. An ad-
vantage of a single-species approach is to couple field surveys and laboratory experiments
to understand what occurs in the field.
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The pale grass blue butterfly, Zizeeria maha, has been used as a field indicator and
laboratory model species to understand evolutionary and developmental plasticity in
response to environmental changes [17,24–28]. In this butterfly, an environmentally induced
plastic phenotype was genetically assimilated in the laboratory experiment and in the field,
which was probably one of the best pieces of evidence for genetic assimilation [29,30]. Just
after the establishment of the pale grass blue butterfly as a laboratory model species that
can also be used as a field indicator species, the Fukushima nuclear accident occurred in
March 2011. Anthropogenic radioactive materials from the Fukushima Dai-ichi Nuclear
Power Plant (FDNPP) heavily polluted the east side of Tohoku district in Japan. The
northern range margin of the pale grass blue butterfly was located 380 km away from the
FDNPP [17], and the polluted area in Fukushima is completely covered by the distribution
range of the pale grass blue butterfly. Without question, the pale grass blue butterfly was
the logical choice for studying the biological effects of the Fukushima nuclear accident.

The Fukushima nuclear accident was reported to have caused various biological and
ecological effects on animals, such as birds [31–33], insects [34–39], Japanese monkeys [40–42],
and intertidal invertebrates [43], plants such as rice [44,45], fir trees [46], red pine trees [47],
and the creeping wood sorrel Oxalis corniculata [48–50], and soil microbes [51]. A series of our
studies [31–34,52–63] demonstrated that the pale grass blue butterfly has been severely affected
by the Fukushima nuclear accident. One of the pieces of important evidence was provided
by the internal exposure experiment, in which the contaminated host plant leaves collected
from Fukushima were given to larvae from Okinawa (where radioactive contamination is
minimal), resulting in high mortality and abnormality rates. However, when an artificial diet
containing pure radioactive cesium (137Cs) was given to larvae, no change in the survival
rate was observed [64]. A similar discrepancy between field and laboratory results has been
observed in the case of the Chernobyl nuclear accident [65,66]. This field-laboratory paradox
was explained by the field effect hypothesis: the host plant in the field responded to low-level
radiation stress by upregulating metabolites that were toxic to larvae as a part of plant defense
mechanisms [59,67]. Subsequent studies have reported upregulated and downregulated
metabolites and nutrients in plant leaves [48–50], supporting this field effect hypothesis.

In a previous metabolomic study [49], the creeping wood sorrel in Okinawa was
irradiated by contaminated soil collected from Fukushima, and the leaf samples (the edible
part for larvae) were subjected to GC–MS (gas chromatography–mass spectrometry) and
LC–MS (liquid chromatography–mass spectrometry) analyses. Under the acute low-dose
radiation conditions, 5.7 mGy (34 µGy/h for seven days), many peaks were significantly
upregulated, although most of them were annotated as multiple compounds or not an-
notated at all. One of the upregulated peaks was singularly annotated as lauric acid by
targeted GC–MS analysis, and two of the upregulated peaks were singularly annotated as
alfuzosin and ikarugamycin by LC–MS analysis. Therefore, the potential toxic effects of
these three compounds are of great interest.

Lauric acid is a saturated fatty acid, also called dodecanoic acid, that can be found
widely in plants. Lauric acid shows a wide variety of bioactivities as a plant defense,
volatile against Staphylococcus [68,69], Mycobacterium tuberculosis [70], fungus [71], and
Phytophthora sojae, an agriculturally important plant pathogen that belongs to Protista [72].
Notably, extracts from Vitex species containing lauric acid have larvicidal activity against
a mosquito species, Culex quinquefasciatus [73]. Lauric acid is likely sensed at least by an
insect, Holotrichia parallela [74], as an odorant. Accordingly, it is reasonable to hypothe-
size a larvicidal activity of lauric acid in O. corniculata against larvae of the pale grass
blue butterfly.

Alfuzosin is a synthetic α1-adrenergic receptor antagonist used widely for the treat-
ment of benign prostatic hyperplasia [75–78]. Because it is synthetic, it is unlikely to be
present naturally in the plant. However, because the LC–MS peak annotated as alfuzosin
has very similar (virtually identical) elution time and exact mass with alfuzosin, examina-
tion of MS/MS (mass spectrometry/mass spectrometry, i.e., tandem mass spectrometry)
spectrograms was required to differentiate alfuzosin and this unknown plant metabolite
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(called the alfuzosin-related compound hereafter) [49]. Faced with the fact that the exact
identity of the alfuzosin-related compound cannot be determined easily, we tested the
toxicity of alfuzosin itself in this study, assuming that alfuzosin and its related metabolite
may have similar biological effects on larvae of the pale grass blue butterfly.

Ikarugamycin is an antiprotozoal agent isolated originally from the soil bacterium
Streptomyces phaeochromogenes var. ikaruganensis [79]. Importantly, ikarugamycin has also
been detected from an endophytic actinomycete, Streptomyces harbinensis, from soybean
root [80]. Endophytic bacteria have been widely observed in plants [81–86], including
O. corniculata [87,88]. Accordingly, ikarugamycin detected from leaves of O. corniculata is
likely from an endophytic Streptomyces sp. in leaves or roots, which responded to low-level ra-
diation [49,50]. Ikarugamycin and its derivatives are antifungal [89] and antibacterial [89,90]
agents and inhibit clathrin-mediated endocytosis in eukaryotic cell lines [91].

These three upregulated metabolites have been hypothesized to function as toxicants
for larvae of the pale grass blue butterfly under low-level radiation stress. In other words,
these compounds are candidate causal substances for the ecological field effects of low-
level radiation pollution in Fukushima. In this study, we tested the above hypothesis by
investigating the ingestional toxicity of these compounds using a novel artificial diet that
has a reduced leaf content of O. corniculata.

To detect their potential toxicity, we examined three aspects of development: meta-
morphosis rates, developmental periods, and adult wing size. The metamorphosis rates
were used to detect the number of surviving individuals after metamorphosis and included
the following: the pupation rate, the eclosion (survival) rate, and the normality rate. The
developmental periods were used to detect developmental retardation or acceleration
and included the following: the egg-larval period, the pupal period, and the immature
period. Adult wing size included both male and female forewing sizes. In this way, we
examined high mortality and abnormalities, growth retardation, and smaller forewing
size, which have been detected as biological effects of the Fukushima nuclear accident in
previous studies [34–37].

2. Materials and Methods
2.1. Egg Collection and Larval Rearing

Egg collection and rearing were performed according to Hiyama et al. (2010) [24] and
other related publications [34,52,56] with some minor modifications, as described briefly
below. Adults of the pale grass blue butterfly Z. maha and its host plant, the creeping wood
sorrel O. corniculata, were collected at the University of the Ryukyus and its vicinity. The
whole plant was placed in a pot and set in a glass tank (300 mm × 300 mm × 300 mm) in
which approximately three female butterflies and a few male butterflies were confined at a
time. A single trial of egg collection was performed for a period of four days. All rearing
processes were executed under the conditions where light was automatically turned on
from 6:00 a.m. to 10:00 p.m. (L16:D8) and room temperature was set at 27 ◦C.

After eggs were deposited on the leaves of the host plant, the plant pot was re-
moved from the glass tank and covered with a plastic bag. When the leaves were eaten
enough by newly hatched larvae, they were transferred to a transparent plastic container
(150 mm × 150 mm × 55 mm), to which a new bunch of the host plant leaves was supplied
every day. Larvae were reared with fresh leaves for 14 days from the beginning of egg
collection. Larvae were then randomly divided into different treatment groups: a fresh
leaf group, an artificial diet group with no test additive (0 mg/g), and a few artificial diet
groups with different concentrations of a test additive (0.01 mg/g, 0.1 mg/g, and 1 mg/g).
One group was reared in one container that housed 15–25 larvae, depending on the total
number of larvae that were obtained simultaneously from a single egg collection trial. The
larvae obtained from a single trial were all siblings; they constitute a sibling group. In this
way, genetic bias was minimized. The artificial diet was given as four small square lumps
(10 mm × 8 mm × 3 mm per lump) at four corners in a container.
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We cleaned containers and changed old lumps of the artificial diet for fresh ones
every day, but unexpected deaths that were apparently unrelated to the toxicity of the
test additives could not be entirely avoided. This is probably partly because we use fresh
leaves collected from the field without sterilization because the sterilization process may
breakdown or vaporize some ingredients in fresh leaves important for larvae to initiate
eating behavior (such as oxalic acid as an eating initiator [92]). Pupation and eclosion
were checked every morning, roughly from 8:30 am to 1:00 pm, so that the data on the
developmental periods (days) could be obtained later. We set a criterion that the eclosion
(survival) rate of the sibling group of the artificial diet without a test additive should be
more than 45% to be considered a successful rearing trial. Sibling groups with eclosion
rates below this criterion were considered technical failures and excluded from subsequent
analyses. This threshold was set as the gap based on our rearing experience. After pupation,
pupae inside the container were transferred to small petri dishes individually. Soon after
eclosion, adult butterflies were frozen until subsequent analyses.

2.2. Artificial Diet Preparation

Larvae require leaves (or some plant chemicals) as a component of an artificial diet to
eat, but the leaf content in an artificial diet should be minimized to test toxicological effects
of a metabolite in leaves themselves. Furthermore, the process of collecting fresh leaves is
the most laborious and time-consuming process for preparing an artificial diet. To meet
these demands, we developed a novel artificial diet for the pale grass blue butterfly for
the feeding experiments in this study. We used a commercially available diet, Silk Mate
L4M (Nosan Corporation, Yokohama, Kanagawa, Japan), for rearing silkworm. This diet
was supplied as powder containing defatted soybean, starch, sugar, cellulose, formative
agent, citric acid, mulberry leaf powder, vitamins, minerals, preservative, and antibiotics
(diet additives), according to the manufacturer’s specification. For the current study, fresh
leaves of the creeping wood sorrel, Silk Mate L4M, and deionized water were mixed at a
weight ratio of 1:3:5. Thus, this new diet was named AD-FSW-135.

A possibility that Silk Mate L4M contains lauric acid, the alfuzosin-related compound,
and ikarugamycin from mulberry leaves was not considered in this study based on the
following reasons, although it cannot be excluded completely. First, ikarugamycin and alfu-
zosin (and thus the alfuzosin-related compound) have never been reported from mulberry
leaves to the best of our knowledge. Besides, their concentrations in the creeping wood
sorrel were low (see below). Second, lauric acid is known to be contained in mulberry
leaves [93,94]. However, because lauric acid is volatile, it may be minimized during an
autoclave sterilization process of Silk Mate L4M. The basal levels of the three compounds
that were carried from the fresh leaves in AD-FSW-135 (prepared in this study) were shown
to be low (see Section 4).

2.3. Lauric Acid, Alfuzosin, and Ikarugamycin

Lauric acid (catalog No. 042-23281, Wako Special Grade; FUJIFILM Wako Chemicals,
Tokyo, Japan), alfuzosin (catalog No. PHR1638, Pharmaceutical Secondary Standard,
Certified Reference Material; Sigma–Aldrich, St. Louis, MO, USA), and ikarugamycin
(catalog No. 15386; Cayman Chemical, Ann Arbor, MI, USA) were purchased. They were
in powder form and were added to the diet preparation directly. They were then mixed
well manually or using an electric mixer until the diet preparation was visually judged to
be homogeneous. In this way, we assumed that the test additives were incorporated evenly
into the diet and became solubilized. However, they might not have been solubilized
completely at higher concentrations (see Section 4). Concentrations of these test additives
were expressed in milligrams per gram of artificial diet (mg/g) throughout this paper. For
lauric acid, we tested 0 mg/g (control), 0.01 mg/g, 0.1 mg/g, and 1 mg/g. This range
covered the estimated concentration of lauric acid in leaves (see below). For alfuzosin, we
tested 0 mg/g (control), 0.01 mg/g, and 0.1 mg/g. For ikarugamycin, we tested 0 mg/g
(control) and 0.01 mg/g. These ranges of alfuzosin and ikarugamycin were much greater
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than the concentrations of the alfuzosin-related compound and ikarugamycin in leaves
(see below). Nevertheless, we tested these concentrations because excessive doses are
often necessary to obtain the median toxic dose TD50 and the median lethal dose LD50 and
because comparison among the three compounds at the same doses may provide us with
valuable information on diverse effects of leaf compounds. Basal levels of the compounds
from leaves in AD-FSW-135 were not taken into account for analyses due to uncertainty of
the estimated leaf concentrations.

2.4. Concentration of Lauric Acid in Leaves

The concentration of lauric acid in leaves was roughly estimated as follows. Lauric
acid in leaves was discovered by the targeted method of GC–MS [49] (Appendix A).
Because this metabolite was targeted based on previously known chemical information,
the identification and peak area data were more credible than the nontargeted method.
Although each compound has a different detection efficiency in GC–MS, it is possible to
roughly compare peak area values among targeted metabolites detected simultaneously
from the same samples. One of the targeted metabolites was oxalic acid. The concentration
of oxalic acid in leaves of O. corniculata has been reported to be 16.9 mg/g (leaf) [95]. On
the other hand, the mean peak area value of oxalic acid (No. 15) in nonirradiated samples
in the targeted GC–MS analysis was 6,409,017 (n = 3) (Figure A1) [49]. Similarly, the mean
peak area value of lauric acid (No. 175) in nonirradiated samples in the targeted GC–MS
analysis was 18,899 (n = 3) (Figure A1) [49]. Therefore, the concentration of lauric acid in
nonirradiated leaves was calculated to be 0.050 mg/g (leaf). When irradiated, the mean
peak area value of lauric acid was 23,977 (n = 3) [49], and it increased approximately
1.27 times to 0.063 mg/g (leaf) under the previous experimental conditions [49].

2.5. Concentration of the Alfuzosin-Related Compound in Leaves

The concentration of the unknown alfuzosin-related compound in Oxalis leaves was
estimated by HPLC spectrograms of LC–MS newly performed in this study (Figure A2).
Leaf samples for the previous study (Figure A1) [49] and the current study (Figure A2) were
identical. Sample preparation procedures followed a previous LC–MS study [49]. Washed
fresh leaves of O. corniculata (100 mg) were frozen, ground, and thoroughly homogenized
with methanol (300 µL). After a brief centrifugation, 200 µL was recovered, from which
10 µL was subjected to LC–MS analysis. This extraction process can be considered a total
volume increase to 400 µL, assuming that leaf density is close to that of water (1.0 g/mL).
The experimental conditions for the LC–MS analysis in the present study are described in
Appendix A.

The alfuzosin-related compound in the leaf extract had a mean peak area value of
201.81 in triplicate of a sample (Figure A2a). This peak area value was similar to that of
the alfuzosin standard (Sigma–Aldrich), 199.36, when 0.10 ng/mL methanol extract was
analyzed (Figure A2b). Although the alfuzosin standard spectrum showed an additional
peak, this peak was found to be an impurity peak in methanol (Figure A2c). Considering
the volume conversion factor, ×4.0, the concentration of the alfuzosin-related compound
in nonirradiated leaves was estimated to be 0.40 ng/g (leaf). In a previous metabolomic
study, the mean peak area values of the alfuzosin-related compound (No. 4746) were
133,169 (n = 3) (without irradiation) and 534,069 (n = 3) (irradiated) (Figure A1) [49]. Thus,
when irradiated, the area value increased 4.01 times to 1.6 ng/mg (leaf) under the previous
experimental conditions.

2.6. Concentration of Ikarugamycin in Leaves

The concentration of ikarugamycin in leaves was estimated based on the previous
peak area values of LC–MS (Figure A1) [49]. Alfuzosin-related compound (No. 4746) had a
mean peak area value of 133,169 (n = 3) in nonirradiated samples, whereas ikarugamycin
had a peak area value of 76,713 (n = 3) from the same samples [49]. Assuming that it is
possible to roughly compare peak area values among metabolites detected simultaneously
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from the same samples, the concentration of ikarugamycin was calculated to be 0.20 ng/g
(leaf) based on the estimated concentration of the alfuzosin-related compound in leaves.
When irradiated, the mean peak area value of ikarugamycin was 99,905. Thus, the area
value increased 1.30 times to 0.26 ng/g (leaf) under the previous experimental conditions.

2.7. Toxicological Output Data

To understand the toxicity of the three metabolites, we recorded three metamorphosis-
related data as the number of individuals as follows: the number of individuals that success-
fully pupated (the number of pupae), the number of individuals that successfully eclosed
(the number of adults), and the number of individuals that successfully eclosed without
wrinkled wings (the number of normal adults), as shown in Appendix B (Tables A1–A4).
These three numbers were used for calculating the three metamorphosis rates: the pupation
rate, the eclosion rate, and the normality rate. For calculations, these numbers were divided
by the starting number of larvae, and the results were expressed as a percentage. The
eclosion rate was also called the “survival rate”.

We also recorded three developmental period data as the number of days: the number
of days from the time point when egg collection started to pupation (the egg-larval days),
the number of days from pupation to eclosion (the papal days), and the number of days
from the time point when egg collection started to eclosion (the immature days). The
immature days are simple summation of the egg-larval days and the pupal days. The
egg-larval days included prepupal days.

Additionally, we measured adult forewing size from the wing base to the apex us-
ing a desktop digital microscope SKM-2000 with its associated software SK-measure
(Saito Kogaku, Yokohama, Kanagawa, Japan). Because male and female forewing sizes
are known to be different in this species [24,64], forewing size data were compiled sex-
dependently. Individuals with wrinkled wings were not subjected to size measurements.
The developmental period data and the forewing size data were compiled in Table S1. The
numbers of individuals in repeated biological trials were also shown in Table S1.

2.8. Statistical Analysis

A treatment group (0.01 mg/g, 0.1 mg/g, or 1 mg/g of a test additive of interest)
was statistically compared to a corresponding no treatment (control) group (0 mg/g). We
performed the χ2 test for the data on the number of individuals that produced the pupation
rate, the eclosion rate, and the normality rate. The χ2 test was also performed for evaluating
the performance of the artificial diets and for comparing the normalized eclosion and
normality rates between lauric acid and alfuzosin. Yates’ correction was not performed. We
performed either Student’s t-test (equal variance) or Welch’s t-test (unequal variance) for
the egg-larval days, the pupal days, the immature days, and the forewing size, assuming
that they were normally distributed. Bonferroni or other correction was not performed.
Statistical analyses were performed using Microsoft Excel (Office 365), JSTAT (Yokohama,
Kanagawa, Japan), and MetaboAnalyst [96]. MetaboAnalyst was also used to produce box
plots of metabolites obtained in a previous study [49].

3. Results
3.1. Performance of the Artificial Diet AD-FSW-135

The new artificial diet AD-FSW-135 developed for this study was compared with
the previous diets, AD-F (artificial diet with fresh leaves) [24] and AD-FSI-112 (artificial
diet with fresh leaves, soy powder, and Insecta F-II (Nosan Corporation)) [64], in terms of
ingredients (Figure 1a). The most important difference among the three artificial diets was
the leaf content. Oxalis leaves occupied 58.7% of the diet in AD-F [24] and 32.2% in AF-FSI-
112 [64]. In contrast, Oxalis leaves occupied only 11.1% in the new diet AD-FSW-135. In
other words, AD-FSW-135 (this study) contained approximately one-fifth and one-third of
fresh leaves of the previous diets AD-F [24] and AD-FSI-112 [64], respectively. The reduced
leaf content in the new diet AD-FSW-135 was considered important for toxicological
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tests (see Section 2). This leaf-content reduction was achieved by the introduction of Silk
Mate L4M (Nosan Corporation), a commercially available artificial diet for silkworms.
In a previous diet, AD-FSI-112, Insecta F-II from the same manufacturer was used [64].
Simplification of the contents for quick and easy preparation with just three ingredients
was also an important advantage of the new artificial diet AD-FSW-135 developed for
this study.
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Figure 1. Ingredients and performance of artificial diets. (a) Ingredients and their weight percentages.
AD-FSW-135 has a reduced leaf content. It also has simplified contents with just three ingredients.
(b) Survival rate (eclosion rate). AD-FSW-135 shows a higher survival rate than AD-D [24] and a
lower rate than AD-F [24] and AD-FSI-112 [64]. The p-values obtained from the χ2 test are shown.
The AD-FSW-135 results were obtained from ten biological repeats (see Supplementary Table S1).
(c) Male (top) and female (bottom) forewing size. The p-values obtained from the t-test between the
natural diet and AD-FSW-135 are indicated. Both natural diet and AD-FSW-135 results were obtained
from ten biological repeats (see Supplementary Table S1).

Throughout the rearing experiments with the new artificial diet AD-FSW-135 contain-
ing a compound of interest (called a test additive), we always simultaneously reared a
group of larvae with natural fresh leaves of the creeping wood sorrel and another group
of larvae with AD-FSW-135 without a test additive (0 mg/g) (Appendix B; Table A1). To
evaluate the performance of the new diet AD-FSW-135, the survival (eclosion) rates of lar-
vae without an additive were compared among the previous and present diets (Figure 1b).
AD-FSW-135 (this study) had a significantly higher survival rate than AD-D (artificial diet
with dried leaves) [24] and a significantly lower rate than AD-FSI-112 [64] and AD-F [24],
indicating that the survival rate of AD-FSW-135 (this study) was not very high but was not
very low. AD-FSW-135 (this study) was thus considered acceptable for toxicological tests,
as long as the majority of larvae could eat AD-FSW-135 and grow.

The forewing size of adult individuals reared with the new diet AD-FSW-135 was
reduced in comparison to that of fresh plant leaves (Figure 1c). Males from the natural diet
and AD-FSW-135 groups showed forewing sizes of 12.16 ± 0.71 mm (mean ± standard
deviation) and 10.88 ± 0.65 mm, respectively. Females from the natural diet and AD-FSW-
135 groups showed forewing sizes of 12.67 ± 0.68 mm and 11.68 ± 0.92 mm, respectively.
In both sexes, the forewing size was reduced significantly. However, these results were
essentially similar to those of the previous diets in terms of size distributions [24,64]; this
level of size reduction seems to be inherent in rearing butterflies in artificial diets. Therefore,
the forewing size reduction in the AD-FSW-135 results was considered acceptable for
toxicological tests in this study.

3.2. Lauric Acid

We prepared three concentrations of lauric acid in the artificial diet: 0.01 mg/g,
0.1 mg/g, and 1 mg/g, in addition to the diet without it (0 mg/g). These concentrations
covered an estimated concentration of lauric acid in the irradiated leaves of O. corniculata of
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0.063 mg/g. The number of pupae, eclosion, and normal adults were recorded (Appendix B;
Table A2). We examined the toxicity of lauric acid from three different viewpoints: meta-
morphosis rates (the pupation rate, eclosion rate, and normality rate), developmental
periods (egg-larval days, pupal days, and immature days), and adult forewing size.

The normality rate linearly decreased in response to the concentration of lauric acid
(Figure 2a). The pupation rate and the eclosion rate were largely similar to the normality
rate except at 0.1 mg/g, which showed an increase (Figure 2a). In comparison to the diet
without lauric acid (0 mg/g), the diet with 1 mg/g showed a significant decrease in the
pupation rate, eclosion rate, and normality rate, indicating the toxicity of lauric acid. At
0.1 mg/g and 1 mg/g, the egg-larval days appeared to be significantly longer than the
control (0 mg/g) (Figure 2b). The immature days of the 0.01 mg/g and 0.1 mg/g treat-
ments were significantly longer than those of the control (0 mg/g). These results indicate
that developmental retardation occurred in the larval periods at all three concentrations
of lauric acid. The forewing size of females at 0.1 mg/g was reduced significantly in
comparison to the control (0 mg/g), although such a reduction was not observed at other
concentrations (Figure 2c).
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Figure 2. Results of the toxicity test for lauric acid. Asterisks indicate levels of statistical significance
in comparison to the control (0 mg/g); *, p < 0.05; **, p < 0.01. These results were obtained from four
biological repeats (see Supplementary Table S1). (a) Pupation rate (green), eclosion rate (brown),
and normality rate (red). The p-values obtained from the χ2 test are indicated. The pink vertical
broken line indicates a rough position of the estimated concentration of lauric acid in irradiated
leaves, 0.063 mg/g. (b) Egg-larval days (blue), pupal days (brown), and immature days (gray). The
mean values (±standard deviation) are shown as bar height. The p-values obtained from the t-test
are indicated. (c) Male (blue green) and female (pink) forewing size. The mean values (±standard
deviation) are shown as bar height. The p-values obtained from the t-test are indicated.

3.3. Alfuzosin

We prepared two concentrations of alfuzosin in the artificial diet, 0.01 mg/g and
0.1 mg/g, in addition to the diet without it (0 mg/g), to compare the results with those of
lauric acid, although the lowest concentration used in the present study, 0.01 mg/g, was
6.3 × 103 times higher than an estimated concentration of the alfuzosin-related compound
in irradiated leaves, 1.6 ng/g. As in the case of lauric acid, we examined the metamorphosis
rates, developmental periods, and adult forewing size (Appendix B; Table A3).

The pupation rate, eclosion rate, and normality rate all decreased significantly in
response to alfuzosin, but not linearly (Figure 3a). Reasons for lower rates at 0.01 mg/g
than those at 0.1 mg/g were uncertain but may be technical (see Section 4). The egg-larval
days and the immature days were significantly different from those without alfuzosin
(0 mg/g) (Figure 3b). Somewhat surprisingly, these differences showed developmental
acceleration instead of retardation. The forewing size did not differ from that of the control
(0 mg/g), but at 0.1 mg/g in females, the forewing size tended to increase, although the
increase was not statistically significant (Figure 3c).
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are indicated.

3.4. Ikarugamycin

We prepared one concentration of ikarugamycin in the artificial diet, 0.01 mg/g, in
addition to the diet without it (0 mg/g) to compare the results with those of lauric acid, al-
though the lowest concentration used in the present study, 0.01 mg/g, was 3.8 × 104 times
higher than an estimated concentration of ikarugamycin in irradiated leaves, 0.26 ng/g. As
in the cases of lauric acid and alfuzosin, we examined the metamorphosis rates, develop-
mental periods, and adult forewing size (Appendix B; Table A4).

Surprisingly, the pupation rate and the eclosion rate increased significantly in response
to ikarugamycin, although an increase in the normality rate was not significant (Figure 4a).
These results indicate mild drug efficacy of ikarugamycin instead of toxicity. In contrast to
lauric acid and alfuzosin, the egg-larval days, pupal days, and immature days at 0.01 mg/g
were not different from those without ikarugamycin (0 mg/g) (Figure 4b). The forewing
size at 0.01 mg/g did not differ from those without ikarugamycin (0 mg/g) (Figure 4c).

3.5. Comparison of Three Compounds

Here, we compared the results of the three compounds tested above. The eclosion
(survival) rates and the normality rates were normalized so that they became 100% when
no compound was added to the diet (0 mg/g) (Appendix B; Tables A5 and A6) as shown in
Figure 5. The eclosion rates (Figure 5a) and the normality rates (Figure 5b) were not very
different, but lauric acid exhibited a smooth and gradual dose-dependent decrease in the
normality rate curve, although not in the eclosion rate curve, as seen previously (Figure 2a).
It is remarkable that the normality rate curves of the three compounds showed different
behaviors; in response to concentration, the lauric acid curves decreased dose-dependently,
the alfuzosin curves decreased more sharply and not linearly, and the ikarugamycin curves
increased (Figure 5b). At the concentration of 0.01 mg/g, where three compounds were
able to be compared, the normality rates of lauric acid, alfuzosin, and ikarugamycin were
69.5%, 23.4%, and 125.0%, respectively (Appendix B; Table A6). The differences between
lauric acid and alfuzosin appeared to be more significant at the concentration of 0.01 mg/g
than 0.1 mg/g in both the eclosion and normality rates, but this may be because of a low
solubility of alfuzosin at 0.1 mg/g (see Sections 2 and 4).
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Figure 4. Results of the toxicity test for ikarugamycin. Asterisks indicate levels of statistical sig-
nificance in comparison to the control (0 mg/g); *, p < 0.05. These results were obtained from
three biological repeats (see Supplementary Table S1). (a) Pupation rate (green), eclosion rate (brown),
and normality rate (red). The p-values obtained from the χ2 test are indicated. The pink vertical
broken line indicates a rough position of the estimated concentration of ikarugamycin in irradiated
leaves, 0.26 ng/g. (b) Egg-larval days (blue), pupal days (brown), and immature days (gray). The
mean values (±standard deviation) are shown as bar height. The p-values obtained from the t-test
are indicated. (c) Male (blue green) and female (pink) forewing size. The mean values (±standard
deviation) are shown as bar height. The p-values obtained from the t-test are indicated.
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As a convention of toxicological analysis, a regression line was determined using the
normality rates as y = −24.9x + 79.8 (R2 = 0.40) for lauric acid, and at the normality rate of
50% (y = 50), lauric acid concentration x was determined as 1.2 mg/g. This is considered
equivalent to the median toxic dose, TD50. Similarly, a regression line was determined as
y = −185x + 64.6 (R2 = 0.069) for alfuzosin, and at the normality rate of 50% (y = 50), the
alfuzosin concentration x was determined to be 0.079 mg/g, which is 15 times smaller than
that of lauric acid. Just to be sure, if the value at 0.1 mg/g in alfuzosin was erroneously high
due to technical reasons, such as low solubility (see Section 4), the LD50 value of alfuzosin
should be much lower.

Likewise, using the eclosion (survival) rates, a regression line was determined as
y = −24.8x + 90.8 (R2 = 0.69) for lauric acid, and at the normality rate of 50% (y = 50),
lauric acid concentration x was determined as 1.6 mg/g. This is considered equiva-
lent to the median lethal dose, LD50. Similarly, a regression line was determined as
y = −126x + 66.9 (R2 = 0.038) for alfuzosin, and at the normality rate of 50% (y = 50), the
alfuzosin concentration x was determined as 0.13 mg/g, which is 12 times smaller than that
of lauric acid. As in the case of TD50, the LD50 value of alfuzosin should be much lower if
the value at 0.1 mg/g was technically erroneous.
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4. Discussion

We tested the ingestional toxicity of three compounds, namely, lauric acid, alfuzosin,
and ikarugamycin, which were significantly upregulated in O. corniculata and annotated by
a previous metabolomic study [49]. For convenience, concentration data are compiled in
Table 1. In this study, we employed a new artificial diet, AD-FSW-135, which contained
a relatively small amount of host plant leaves, occupying just 11% of the entire diet.
It is important to keep the leaf content as low as possible in the artificial diet due to
an experimental addition of a testing compound. Indeed, the basal levels of the three
compounds in the new diet AD-FSW-135 (Table 1) were considered low enough for the
current study. This new diet showed acceptable performance based on the survival rate
and forewing size, two indexes to evaluate artificial diets [64]. Thus, we believe that the
use of AD-FSW-135 in the present study is justifiable but that there is still much room for
further improvement of artificial diets.

Table 1. Concentrations of the three metabolites of interest.

Metabolite Leaf
(w/o Radiation)

Leaf
(with Radiation) *1

Basal Level in
AD-FSW-135

Toxicity Test in
AD-FSW-135 *2 Coverage *3 TD50 LD50

Lauric acid 0.050 mg/g 0.063 mg/g 0.0055 mg/g 0, 0.01, 0.1, 1 mg/g Yes 1.2 mg/g 1.6 mg/g

Alfuzosin *4 0.40 ng/g 1.6 ng/g 0.044 ng/g 0, 0.01, 0.1 mg/g No 0.079 mg/g 0.13 mg/g

Ikarugamycin 0.20 ng/g 0.26 ng/g 0.022 ng/g 0, 0.01 mg/g No NA NA

*1: For irradiation conditions, see Sakauchi et al. (2021) [49]. *2: Concentrations in toxicity tests ignore the basal
levels of these metabolites from leaves in AD-FSW-135. *3: Coverage indicates if leaf concentration was covered
by the tested concentration range. *4: Alfuzosin was tested, but the leaf concentrations shown here are those of
the alfuzosin-related compound. NA: Not applicable.

With this new diet AD-FSW-135, we demonstrated that lauric acid was toxic to larvae
dose-dependently in terms of metamorphosis rates, although the larval response was mild.
Lauric acid is present in leaves without radiation, and larvae are certainly tolerant to lauric
acid at the leaf level of 0.050 mg/g, explaining the gradual dose–response curves. The mild
toxicity of lauric acid is expressed in its TD50, 1.2 mg/g, in contrast to the TD50 of alfuzosin,
0.079 mg/g. LD50 values also indicated such a relationship. We observed some toxicity
even at the level of 0.01 mg/g, but this may be because larvae were exposed to a sudden
rise in lauric acid concentration when the artificial diet was first given. In addition to the
changes in the metamorphosis rates, growth retardation was detected at the egg-larval
period in response to lauric acid. Furthermore, the forewing size reduction was observed,
although only at 0.1 mg/g in females. These results indicate the toxicity of lauric acid on
the developmental physiology of the butterfly and appear to be biologically significant in
the field because the estimated concentration of lauric acid in irradiated leaves, 0.063 mg/g,
was covered by the current study.

In a previous study, the fold change values in the upregulation of lauric acid was
1.27 at low-level radiation exposure; the cumulative dose to the plant was 5.7 mGy
(34 µSv/h in a period of seven days) [49]. It is somewhat surprising that the plant signif-
icantly responded to this low-level exposure, and we expect that the fold change value
may increase further in response to higher levels of radiation exposure. According to
Nohara et al. (2014) [52], the ground radiation dose rate in Iitate was 18.9 µSv/h, which
is indeed lower than the experimental dose rate used in our study, 34 µSv/h. However,
experimental irradiation in the present study was only by external exposure during a
very limited period of time (seven days), but in the wild, both external and internal ex-
posures are expected for much longer periods of time throughout the entire life span of
the butterfly. Importantly, the present results are reminiscent of those found in previous
exposure experiments [34–36,52–56] and may also explain the spatiotemporal dynamics
of the abnormality rates and collection efficiency (an indicator of population density) in
2011–2013 in Fukushima [37]. Therefore, we conclude that lauric acid acts as a potent
toxicant (larvicide) for the pale grass blue butterfly not only in the laboratory but also in
wide polluted areas in Fukushima in the field.
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This conclusion is consistent with previous studies on lauric acid as a plant defense
chemical [68–74]. More tolerance may evolve in larvae in the field, and this scenario may ex-
plain the adaptive evolution of the butterfly shown in the polluted areas in Fukushima [56].
Interestingly, lauric acid has been reported to be a feeding stimulant for the silkworm at
the concentration of 0.013% in an artificial diet [94]. This percentage corresponds to the
0.1 mg/g level in the present study. In lepidopteran insects, a feeding stimulant for a given
species is often toxic to other organisms [97]. Thus, it is reasonable that a feeding stimulant
for the silkworm moth, lauric acid, is toxic to the pale grass blue butterfly. Conversely, a
feeding stimulant for the pale grass blue butterfly, oxalic acid [92], is probably toxic to other
insects including the silkworm moth.

Alfuzosin was also demonstrated to be toxic, but its toxicity was not linearly dose
dependent in the metamorphosis rates. We do not understand this nonlinearity, but it
might have originated from a technical reason regarding low solubility; alfuzosin might
not have been dissolved well in the diet at the relatively high concentrations. Surprisingly,
in addition to the reduced metamorphosis rates, alfuzosin appeared to act on the egg-
larval period to accelerate growth and tended to increase the forewing size. These results
are in sharp contrast to those of lauric acid, indicating different toxic pathways in these
two compounds. Because alfuzosin is an antagonist of the α1-adrenergic receptor [75–78],
it may act on insect receptors for biogenic amines, such as octopamine and tyramine [98].
Nonetheless, both alfuzosin and lauric acid seem to affect the larval period but not the
pupal period.

Because the alfuzosin concentrations tested in AD-FSW-135 were much higher than
those in leaves and because the biological effects of alfuzosin and its related compound are
not necessarily similar, direct extrapolations of the alfuzosin results to the alfuzosin-related
compound were difficult. However, there may be a possibility that the alfuzosin-related
compound was as toxic as alfuzosin due to their structural similarities. If so, the alfuzosin-
related compound is 15 times as toxic as lauric acid (based on the TD50 values) and 12 times
as lethal as lauric acid (based on the LD50 values), but the concentration of the alfuzosin-
related compound in leaves was much lower than that of lauric acid. Therefore, the presence
of the alfuzosin-related compound in leaves would not affect larvae in the field.

In contrast, ikarugamycin showed mild drug efficacy instead of toxicity. This may be
simply because it is an antibiotic that inhibits bacterial or fungal growth in the artificial
diet, although some antibiotics were contained in Silk Mate L4M, a commercially available
ingredient of AD-FSW-135. In that case, ikarugamycin may protect the plant in the wild
from fungal and bacterial infection. However, this drug efficacy of ikarugamycin for larvae
may not be evident in the field because of the low concentration of ikarugamycin in leaves.
Therefore, ikarugamycin would not nullify the toxicity of plant larvicides, such as lauric
acid, in the field. Importantly, the present results of ikarugamycin suggest a possible
contribution of metabolites from endophytic bacteria to plant and larval immunity under
radiation stress. Practically, further addition of ikarugamycin or other antibiotics into
AD-FSW-135 may improve its performance in the future.

In reality, in the wild, lauric acid and other upregulated unknown metabolites prob-
ably function together to ward off insects. Indeed, in response to radiation exposure,
24 upregulated peaks (p < 0.05) were obtained in LC–MS, among which only two of them
(alfuzosin and ikarugamycin) were annotated singularly [49]. Only one upregulated peak
(p < 0.05) was obtained in targeted GC–MS, which was lauric acid [49]. Additionally,
10 upregulated peaks (p < 0.05) were obtained in nontargeted GC–MS [49].

It is not possible, at least at this point, to demonstrate collective effects of many up-
regulated compounds with an artificial diet containing them. On the other hand, the
“collective effects” have already been known by internal exposure experiments using con-
taminated leaves collected from Fukushima, resulting in lower survivorship and growth
retardation [34–36,52–56]. We also have evidence that external exposure resulted in similar
outcomes [34]. Therefore, the present finding that at least one upregulated metabolite,
lauric acid, is larvicidal, is important. It is reasonable to conclude that the intricate bal-
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ance between the plant and the larva through chemical interactions was affected by the
Fukushima nuclear accident.

In addition to revealing the importance of plant-insect interactions in evaluating the
biological effects of the Fukushima nuclear accident, this study opened new perspectives.
Because ikarugamycin is likely produced by an endophytic bacterium, bacterial, fungal, or
other microbial communities in plants and soil may play a role in amplifying the biological
effects of low-dose radiation pollution.

5. Conclusions

We demonstrated within a reasonable concentration range (0.01 mg/g to 1 mg/g)
that lauric acid is able to function as a toxicant for the pale grass blue butterfly at the
leaf concentration (0.063 mg/g with radiation) by lowering metamorphosis rates and by
causing growth retardation. Based on its TD50 and LD50 values (1.2 mg/g and 1.6 mg/g,
respectively), lauric acid may be considered a mild larvicide. In the field, lauric acid proba-
bly acts as one of the larvicides in leaves in response to radiation exposure. Interpretations
of alfuzosin results are not straightforward, but its relatively low TD50 and LD50 values
(0.079 mg/g and 0.13 mg/g, respectively) imply that the alfuzosin-related compound may
also be toxic, although it may be irrelevant in the field because of its low leaf concentration
(1.6 ng/g with radiation). Because ikarugamycin is an antibiotic likely from endophytic
bacteria, its drug efficacy on increasing the metamorphosis rates of larvae may be sec-
ondary; it may function to prevent the artificial diet from fungal and bacterial growth. As
an extrapolation, ikarugamycin may function to protect leaves from fungi and bacteria
under radiation stress. The case of ikarugamycin suggests a contribution of endophytic
bacteria to the process of radiation-stress management in the plant.

In conclusion, the present results provide experimental evidence for the field effect
hypothesis that concentration changes in radiation-induced metabolites, such as lauric acid,
in the host plant leaves of the pale grass blue butterfly caused deterioration of the butterfly
at the individual and population levels in radioactively polluted areas in Fukushima.
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Appendix A

To estimate the concentrations of the three metabolites of interest, lauric acid, alfuzosin-
related compound, and ikarugamycin in leaves, the peak area values for these metabolites
and oxalic acid obtained in the previous GC–MS and LC–MS analyses were compared
(Figure A1). Exact values are mentioned in the Section 2. For the alfuzosin-related com-
pound, LC–MS analyses were newly performed in the present study in triplicate to estimate
its concentration in leaves using an alfuzosin standard (Sigma–Aldrich) as a reference
material (Figure A2). Leaf samples used for Figures A1 and A2 were identical.

We used a Shimadzu Prominence UFLC XR System (Kyoto, Japan) equipped with a
Shimadzu solvent delivery unit LC-20ADXR and a Shimadzu autosampler SIL-20ACXR
using a reverse-phase column Inertsil ODS-4 (2.1 mm × 150 mm) (GL Sciences, Tokyo,
Japan). Mobile phase A was a 0.1% aqueous solution of formic acid, and mobile phase
B was acetonitrile with a time program of its concentrations as follows: 20% (0 min)→
40% (10 min) → 98% (10.01–15 min) → 20% (15.01–23 min). The injection volume was
10 µL, and the flow rate was 0.2 mL/min.

A peak of the alfuzosin-related compound was obtained at 6.7 min from the leaf extract
(Figure A2a). The alfuzosin standard also showed a peak at 6.7 min but with an additional
peak at 2.1 min (Figure A2b). The latter peak was an impurity from methanol (Figure A2c).
MS/MS analyses were also performed simultaneously to confirm the identities of these
compounds (not shown).
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Figure A1. Peak area values of oxalic acid and lauric acid in the targeted GC–MS analysis [49] (left) and
peak area values of alfuzosin-related compound and ikarugamycin in the LC–MS analysis [49] (right). Box
plots for lauric acid, alfuzosin, and ikarugamycin are also shown in Sakauchi et al. (2021) [49]. IR (shown
in red) and NC (shown in green) indicate irradiated samples (n = 3) and nonirradiated control samples
(n = 3), respectively. A single black dot represents the mean value of triplicate of a sample. FC indicates
fold change of mean values from nonirradiated to irradiated samples. These plots were produced using
MetaboAnalyst [96]. Asterisks indicate levels of statistical significance; *, p < 0.05; **, p < 0.01 (t-test).
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Figure A2. Identification of the alfuzosin-related metabolite by HPLC. (a) Leaf extract. A peak at
6.74 min was observed. This is one of the triplicate results. The peak area value here is 224.17.
(b) Alfuzosin standard (Sigma–Aldrich) 0.1 ng/mL in methanol. The peak at 6.69 min is attributed to
alfuzosin, and the peak at 2.09 min is attributed to an impurity in methanol. The peak area value of
alfuzosin, 199.36, is similar to that of the alfuzosin-related compound. (c) Methanol only. A peak at
2.12 min was observed, demonstrating impurity.

Appendix B

The exact numbers and percentages of individuals obtained after the feeding exper-
iments are shown below for leaf and AD-FSW-135 (without any test additive) controls
(Table A1), lauric acid (Table A2), alfuzosin (Table A3), and ikarugamycin (Table A4). Nor-
malized eclosion rates (survival rates) (Table A5) and normalized normality rates (Table A6),
used for Figure 5, are also shown. Further information can be found in Table S1.

Table A1. Number of individuals after rearing with live leaves or AD-FSW-135.

Number Leaf AD-FSW-135

Number of starting individuals 185 (100%) 205 (100%)

Number of pupae (Pupation rate) 168 (90.8%) 165 (80.5%)

Number of eclosion (Eclosion rate) 166 (89.7%) 141 (68.7%)

Number of normal adults (Normality rate) 156 (84.4%) 99 (48.3%)
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Table A2. Number of individuals after oral administration of lauric acid.

Number 0 mg/g 0.01 mg/g 0.1 mg/g 1 mg/g

Number of starting individuals 75 (100%) 50 (100%) 75 (100%) 75 (100%)

Number of pupae (Pupation rate) 66 (88.0%) 41 (82.0%) 68 (90.7%) 52 (69.3%)

Number of eclosion (Eclosion rate) 56 (74.7%) 30 (60.0%) 50 (66.7%) 37 (49.3%)

Number of normal adults
(Normality rate) 41 (54.7%) 19 (38.0%) 27 (36%) 23 (30.7%)

Table A3. Number of individuals after oral administration of alfuzosin.

Number 0 mg/g 0.01 mg/g 0.1 mg/g

Number of starting larvae 60 (100%) 60 (100%) 60 (100%)

Number of pupae (Pupation rate) 46 (76.7%) 17 (28.3%) 26 (43.3%)

Number of eclosion (Eclosion rate) 38 (63.3%) 11 (18.3%) 22 (36.7%)

Number of normal adults (Normality rate) 30 (50.0%) 7 (11.7%) 15 (25.0%)

Table A4. Number of individuals after oral administration of ikarugamycin.

Number 0 mg/g 0.01 mg/g

Number of starting individuals 70 (100%) 70 (100%)

Number of pupae (Pupation rate) 53 (75.7%) 62 (88.6%)

Number of eclosion (Eclosion rate) 47 (67.1%) 59 (84.3%)

Number of normal adults (Normality rate) 28 (40.0%) 35 (50.0%)

Table A5. Normalized eclosion rates (survival rates).

Metabolite 0 mg/g 0.01 mg/g 0.1 mg/g 1 mg/g

Lauric acid 100% 80.3% 89.3% 66.0%

Alfuzosin 100% 28.9% 58.0% NA

Ikarugamycin 100% 125.6% NA NA
NA: not applicable.

Table A6. Normalized normality rates.

Metabolite 0 mg/g 0.01 mg/g 0.1 mg/g 1 mg/g

Lauric acid 100% 69.5% 65.8% 56.1%

Alfuzosin 100% 23.4% 50.0% NA

Ikarugamycin 100% 125.0% NA NA
NA: not applicable.
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